Targeting Arginine-Dependent Cancers with Arginine-Degrading Enzymes: Opportunities and Challenges

نویسندگان

  • Melissa M. Phillips
  • Michael T. Sheaff
  • Peter W. Szlosarek
چکیده

Arginine deprivation is a novel antimetabolite strategy for the treatment of arginine-dependent cancers that exploits differential expression and regulation of key urea cycle enzymes. Several studies have focused on inactivation of argininosuccinate synthetase 1 (ASS1) in a range of malignancies, including melanoma, hepatocellular carcinoma (HCC), mesothelial and urological cancers, sarcomas, and lymphomas. Epigenetic silencing has been identified as a key mechanism for loss of the tumor suppressor role of ASS1 leading to tumoral dependence on exogenous arginine. More recently, dysregulation of argininosuccinate lyase has been documented in a subset of arginine auxotrophic glioblastoma multiforme, HCC and in fumarate hydratase-mutant renal cancers. Clinical trials of several arginine depletors are ongoing, including pegylated arginine deiminase (ADI-PEG20, Polaris Group) and bioengineered forms of human arginase. ADI-PEG20 is furthest along the path of clinical development from combinatorial phase 1 to phase 3 trials and is described in more detail. The challenge will be to identify tumors sensitive to drugs such as ADI-PEG20 and integrate these agents into multimodality drug regimens using imaging and tissue/fluid-based biomarkers as predictors of response. Lastly, resistance pathways to arginine deprivation require further study to optimize arginine-targeted therapies in the oncology clinic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of seed pre-treatment with L-arginine on improvement of seedling growth and alleviation of oxidative damage in canola plants subjected to salt stress. Fatemeh Nasibi1, 2*, Khosrow Manouchehri Kalantari1, 2 and Adeleh Barand1

Soil salinity is one of the major abiotic stresses that adversely affect plant productivity and quality. Therefore, an experiment was conducted to investigate the effects of seed treatment with L-arginine on some morphological and physiological parameters of Brassica napus under salinity stress. The seeds of canola were pre-treated with three arginine concentrations (0, 5, and 10µM Arg) for 24 ...

متن کامل

Protective Role of Arginine Against Oxidative Damage Induced by Osmotic Stress in Ajwain (Trachyspermum ammi) Seedlings Under Hydroponic Culture

Assessing the tolerance of medicinal plants is important for planting them in drought areas. Arginine is a growth regulator and its role in plants’ tolerance to environmental stresses such as drought has been investigated. To evaluate the protective effects of arginine against osmotic stress induced by polyethylene glycol in ajwain (Trachyspermum ammi) seedlings, an experiment was conducted as ...

متن کامل

Arginine deiminase expressed in vivo, driven by human telomerase reverse transcriptase promoter, displays high hepatoma targeting and oncolytic efficiency

Arginine starvation has the potential to selectively treat both primary tumor and (micro) metastatic tissue with very low side effects. Arginine deiminase (ADI; EC 3.5.3.6), an arginine-degrading enzyme, has been studied as a potential anti-tumor drug for the treatment of arginine-auxotrophic tumors. Though ADI-PEG20 (pegylated ADI by PEG 20,000) already passed the phase I/II clinical trials [1...

متن کامل

The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor.

The twin-arginine translocation (Tat) pathway is a protein transport system for the export of folded proteins. Substrate proteins are targeted to the Tat translocase by N-terminal signal peptides harboring a distinctive R-R-x-Phi-Phi "twin-arginine" amino acid motif. Using a combination of proteomic techniques, the protein contents from the cell wall of the model Gram-positive bacterium Strepto...

متن کامل

Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes

It has been shown that a subset of human cancers, notably, melanoma and hepatocellular carcinoma (HCC) are auxotrophic for arginine (Arg), because they do not express argininosuccinate synthetase (ASS), the rate-limiting enzyme for the biosynthesis of arginine from citrulline. These ASS-negative cancer cells require Arg from extracellular sources for survival. When they are exposed to recombina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2013